Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆
نویسندگان
چکیده
The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep.
منابع مشابه
Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light.
In humans, modulation of circadian rhythms by light is thought to be mediated primarily by melanopsin-containing retinal ganglion cells, not rods or cones. Melanopsin cells are intrinsically blue light-sensitive but also receive input from visual photoreceptors. We therefore tested in humans whether cone photoreceptors contribute to the regulation of circadian and neuroendocrine light responses...
متن کاملThe role of environmental light in sleep and health: effects of ocular aging and cataract surgery.
Environmental illumination profoundly influences human health and well-being. Recently discovered photoreceptive retinal ganglion cells (pRGCs) are primary mediators of numerous circadian, neuroendocrine and neurobehavioral responses. pRGCs provide lighting information to diverse nonvisual (non-image-forming) brain centers including the suprachiasmatic nuclei (SCN) which serve as the body's mas...
متن کاملAge-Related Changes in Circadian Rhythms During Adulthood
Glossary Circadian challenge: Situations in which the circadian timing system needs to adapt to changes in environmental time cues (e.g., jet lag and shift work). Circadian entrainment: Circadian rhythms are endogenous, but they are sensitive to the environment. Entrainment mechanisms exist to synchronize the endogenous circadian period of about 24 h to the environmental day–night cycle of exac...
متن کاملDoes pupil constriction under blue and green monochromatic light exposure change with age?
Many nonvisual functions are regulated by light through a photoreceptive system involving melanopsin-expressing retinal ganglion cells that are maximally sensitive to blue light. Several studies have suggested that the ability of light to modulate circadian entrainment and to induce acute effects on melatonin secretion, subjective alertness, and gene expression decreases during aging, particula...
متن کاملLight and the laboratory mouse
Light exerts widespread effects on physiology and behaviour. As well as the widely-appreciated role of light in vision, light also plays a critical role in many non-visual responses, including regulating circadian rhythms, sleep, pupil constriction, heart rate, hormone release and learning and memory. In mammals, responses to light are all mediated via retinal photoreceptors, including the clas...
متن کامل